Tellurium and tellurium compounds

(excluding TeF₆)

Health-based Reassessment of Administrative Occupational Exposure Limits

Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands

No. 2000/15OSH/055, The Hague, 31 October 2002

all rights reserved

Preferred citation:

Health Council of the Netherlands: Committee on Updating of Occupational Exposure Limits. Tellurium and tellurium compounds (excluding TeF_6); Health-based Reassessment of Administrative Occupational Exposure Limits. The Hague: Health Council of the Netherlands, 2002; 2000/15OSH/055.

1 Introduction

The present document contains the assessment of the health hazard of tellurium and its compounds, except for tellurium hexafluoride, by the Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands. The first draft of this document was prepared by MA Maclaine Pont, M.Sc. (Wageningen University, Wageningen, the Netherlands).

The evaluation of the toxicity of tellurium and its compounds has been based on the review by the American Conference of Governmental Industrial Hygienists (ACG99). Where relevant, the original publications were reviewed and evaluated as will be indicated in the text. In addition, literature was retrieved from the data bases Toxline, Medline, and Chemical Abstracts, covering the periods of 1981 to April 1999, 1966 to May 1999, and 1937 to April 1999, respectively*. The final literature search was carried out in May 1999.

The literature search focused on those tellurium compounds of which some information could be found in either the Dictionary of chemical names and synonyms (How92) or in the CRC Handbook of chemistry and physics (Lid96); for dimethyltelluride and diethyltelluride a separate search was performed.

In September 2001, the President of the Health Council released a draft of the document for public review. The committee received no comments.

2 Identity

Forty-two isotopes of tellurium are known with atomic masses ranging from 106 to 138; natural Te exists of eight isotopes (mainly ¹³⁰Te, ¹²⁸Te, and ¹²⁶Te). The half-life times of the unstable isotopes range from 0.06 milliseconds to 1.3 x 10^{13} years (Lid96).

The following key words were used: tellurium, telluride, methyltelluride, tellurobismethane, ethyltelluride, tellurobisethane, hydrogen telluride, and the CAS numbers 593-80-6, 627-54-3, 7446-07-3, 7783-09-7, 7789-54-0, 7790-48-9, 7803-68-1, 10025-71-5, 10026-07-0, 10031-27-3, 10049-23-7, 10102-20-2, 13451-18-8, 13494-80-9, 13845-35-7, 15192-26-4 and 20941-65-5. Health effects from radiation were excluded.

055-3 Tellurium and tellurium compounds (excluding TeF_6)

The following data have been found:

name	molecular formula	synonyms	CAS number
ethane, tellurobis-	$Te(C_2H_5)_2$	diethyltelluride; diethyltellurium; ethyltelluride	627-54-3
hydrogen telluride	H ₂ Te	hydrogen tellurite	7783-09-7
methane, tellurobis-	Te(CH ₃) ₂	dimethyltelluride; dimethyltellurium; methyltelluride	593-80-6
telluric (VI) acid	H ₆ TeO ₆		7803-68-1
telluric acid	H ₂ TeO ₃	tellurous acid	10049-23-7
telluric acid, disodium salt	H ₂ O ₃ Te.2Na	sodium tellurate; sodium tellurate (IV); sodium tellurite; tellurous acid, disodium salt	10102-20-2
telluric acid, lead (2 ⁺) salt 1:1	H ₂ O ₄ Te.Pb	lead tellurate; lead tellurite	13845-35-7
tellurium	Te	aurum paradoxum; metallum problematum; telloy	13494-80-9
tellurium dibromide	TeBr ₂	tellurium bromide	7789-54-0
tellurium dichloride	TeCl ₂	tellurium chloride	10025-71-5
tellurium dioxide	TeO ₂		7446-07-3
tellurium tetrabromide	TeBr ₄		10031-27-3
tellurium tetrachloride	TeCl ₄	telluric chloride; tellurium chloride; tellurium chloride (T-4)-; tetrachlorotellurium	10026-07-0
tellurium tetrafluoride	TeF ₄		15192-26-4
tellurium tetraiodide	TeI ₄		7790-48-9
tellurium trioxide	TeO ₃		13451-18-8

055-4 Health-based Recommended Occupational Exposure Limits

3 Physical and chemical properties

name	physical form	mol. weight	solubility in water	melting point	boiling point	vapour pressure	odour threshold
$Te(C_2H_5)_2$		185.72					
H ₂ Te	unstable gas ^c	129.62	soluble	-49°C	-2°C		
Te(CH ₃) ₂	liquid	157.67		-10°C	91-92°C		a
H ₆ TeO ₆	white monoclinic crystals	229.64	soluble	136°C	-		
H ₂ TeO ₃	white crystals	177.61	slightly	decomp. 40°C	-		
H ₂ O ₃ Te.2Na		223.59					b
Te	gray-white rhombohedral crystals	127.6	insoluble	449.5°C	988°C	at 520°C: 0.13 kPa	
TeBr ₂	green-brown hygroscopic crystals	287.41	reacts	210°C	339°C		
TeCl ₂	black amorphous hygroscopic solid	198.51	reacts	208°C	328°C		
TeO ₂	white orthorhombic crystals	159.6	insoluble	733°C	1245°C		0.003 mg/m ³
TeBr ₄	yellow-orange monoclinic crystals	447.22	reacts	388°C	±420°C, decomposes		
TeCl ₄	white monoclinic hygroscopic crystals	269.41	reacts	224°C	387°C	at 253°C: 2.66 kPa	
TeF ₄	colourless crystals	203.59	reacts	129°C	195°C, decomposes		
TeI ₄	black orthorhombic crystals	635.22	reacts	280°C	-		
TeO ₃	yellow-orange crystals	175.6	insoluble	430°C	-		

Physical and chemical properties of tellurium and some of its compounds.

^a Measured in waste water, after biological treatment: approximately 0.15 mg Te/kg organic sludge (Dij88).

^b Taste threshold in water: 10 mg/L (Len67).

^c The lower ignition limit is lower than 10 kPa; it decomposes with the evolution of 23.83 kcal/mol of heat into H_2 and Te (Mik77).

Data from Ano94, Lid96, Yak74.

Conversion factors for dimethyltelluride (20°C, 101.3 kPa) are: 1 ppm = 6.56 mg/m³; 1 mg/m³ = 0.15 ppm and for hydrogen telluride (20°C, 101.3 kPa): 1 ppm = 5.40 mg/m³; 1 mg/m³ = 0.19 ppm. For the other compounds conversion factors are not applicable.

055-5 Tellurium and tellurium compounds (excluding TeF_6)

Further, no flash points, explosion limits, and log $\mathrm{P}_{_{octanol/water}}$ values were found.

Elemental tellurium will burn slowly in air; a finely divided suspension in air can explode. Reactions with zinc, chlorine, fluorine, and solid sodium are vigorous and have a potential to cause fires (Bel94). Tellurium alkyls are normally inert in air or in contact with water at room temperature. They form tellurium dioxide as the final product of oxidation or combustion. They also undergo slow oxidation in the presence of water or moisture to form alkylhydroxytellurium derivatives, which are not well characterised (Roy93).

4 Uses

Elemental tellurium is used as an additive to copper, iron, and steel, in vulcanising rubber, as a colouring agent in glass and ceramics, and in some other applications (ACG99, Bud96). Certain telluride alloys are employed in the semiconductor industry (ACG99). Tellurium tetrachloride is used as a catalyst in several condensation reactions. Tellurium dioxide is used in acousto-optical filters in astronomy and in lasers, as a catalyst in oxidation reactions, in electroconductivity devices, as an additive in glass, in optical and photoacoustic devices. Tellurium trioxide is used as a catalyst in oxidation reactions (12th Collective Index of Chemical Abstracts: 12CI).

5 Biotransformation and kinetics

Elemental tellurium is only slowly metabolised, and it is eliminated as dimethyltelluride in urine, sweat, and expired air (ACG99). The proof for the formation of dimethyltelluride in man or laboratory animals was not given. In the literature, one study from 1884 was found that deals with this issue (Tay97). However, the formation of dimethyltelluride by bacteria (*P. fluorescens*) and fungi (*A. falciforme* and *P. citrinum*) has been proven after growth in the presence of potassium tellurite (K_2 TeO₃) (Cha90). In humans, the formation of dimethyltelluride is probably reduced by the intake of ascorbic acid (DeM47a) and by 2,3-dimercaptopropanol (BAL = British Anti Lewisite) (Amd47). However, others report that BAL is not effective, and that Te induces kidney and liver toxicity (Amd58 in Ein84).

The daily intake for man is estimated to be 0.6 mg, with an oral absorption of 25% and a half-life time of 3 weeks. The body burden is approximately 0.12

055-6 Health-based Recommended Occupational Exposure Limits

ppm (mainly in the bones). The losses for a reference man are: 83% via the urine, 15.6% via the faeces, and 1.6% in exhaled air (Sca92).

In a group of workers who were occupationally exposed to Te and TeO₂ fumes, the urinary concentration was measured: heavy exposure (0.1-0.29 mg Te/m³): 9/22 samples contained 0.02-0.03 mg Te/L; moderate exposure (0.05-0.09 mg Te/m³): 18/30 samples contained 0.01-0.02 mg Te/L; light exposure (0.01-0.05 mg Te/m³): 33/46 samples contained < 0.01 mg Te/L; the control group (n=26) had no Te in the urine (Ste42).

After an oral dose of a Te compound, human volunteers showed an intestinal absorption of $25 \pm 10\%$ for soluble tellurium salts. The renal tellurium excretion was faster after administration of hexavalent tellurium than after ingestion of the tetravalent form. The introduction of Te to cress (the water plant *Lepidium sativum* L.) lowered the intestinal absorption to approximately 15%. For metallic Te, the fractional intestinal absorption was found to be about 10% (Kro91b).

Animal data are summarised in Table 1.

The estimated biological half-life times for the major retention sites of tellurium in rats were estimated to be about 9 days in blood, 10 days in liver, 17 days in muscles, 23 days in kidneys, and 600 days in bones (Fis91).

Summarising, the kinetics of tellurium-compounds after intravenous injection and after oral dosing differ. After intravenous injection, a higher percentage of the dose is found in the liver and the kidneys than after oral dosing. A lower percentage can be found in blood, spleen, and brain. Exhalation comprises a small part of the excretion: 0.1-7% of the intravenously injected dose (DeM47b, Kor65, Mos60, Sca92). After oral dosing, tellurium is absorbed from the intestines to a maximum of 25%; it is excreted mainly via the faeces. After intravenous injection in rats, Te excretion is higher via the urine than via the faeces. After intravenous injection, a half-life time for Te clearance from the body of rats is calculated to be 6 days (Kor65).

055-7 Tellurium and tellurium compounds (excluding TeF_6)

Table 1 Summary of experimental animal toxicokinetic data.

animal species	Te compound	dosing regimen	results	reference
rat (white)	¹²⁷ TeCl ₄ , 3 μCi	intratracheal; dose(s) not given	88% was removed from the lungs in the first 24 h; 60% was still retained in the body after 7 days.	Dob70
rat	¹³² TeCl ₄ , 3.2 μCi	iv, single; dose(s) not given	6 h after injection: 20% in the liver; 8.2% in the bones; 7.3% in the kidneys; 2.2% in the lungs; 0.7% in the spleen, 0.4% in the brain; $t_{\rm x}$: for Te clearance from the body: 6 days.	Kor65
rat	Te	iv, single; dose(s) not given	distribution in the body: 24.2% in bones; 16.4% in liver, 10% in blood, 10% in muscles, 10% in skin, 7% in lungs, 5.8% in kidneys.	Mos60
rat	Те	oral, single; dose(s) not given	20-25% absorbed via the intestines; 0.55% in kidneys; 0.35% in blood; 0.4% in liver; 6.2% in spleen; 70-75% of the excreted quantity was via the faeces; within 16 days, 15% of the amount administered was excreted.	Mos60
rat	¹²⁷ Te	iv, single; dose(s) not given	distribution: 18.6% in blood, 11.9% in muscles; 9.7% in liver; 8.6% in skeleton; 2.5% in kidneys.	Mos64
rat	¹²⁷ Te	oral, single; dose(s) not given	10-25% absorbed via the intestines; of that fraction, 1.2% accumulated in muscles, 0.4% in liver, 0.4% in skeleton, 0.2% in kidneys.	Mos64
rat	¹²⁷ Te	oral, single; dose(s) not given	distribution: blood, kidneys>spleen, liver, lungs>heart, adrenal glands>muscles, brain; 79% was excreted via the faeces, 2.7% via the urine	San63
rat	Te, radioactive	iv, single ; dose(s) not given	33% was excreted via the urine in the first week and ca. 14% via the faeces; in the first 24 h, >14% was excreted, in subsequent days 2-3%; the highest concentrations were found in kidneys, liver, bone, and thyroid gland.	Slo70a
rat	Na ₂ ¹²⁷ TeO ₃	oral, single; dose(s) not given	ca. 25% was absorbed via the intestines; in the first week ca. 65% was excreted via the faeces; ca. 9% was excreted via the urine.	Slo70b
rabbit	Na ₂ TeO ₃	iv, single: 0.18 mg Te; oral, single: 2.5 mg Te	fractional intestinal absorption: 40%.	Kro91a

055-8 Health-based Recommended Occupational Exposure Limits

Table 1 Continued.

animal species	Te compound	dosing regimen	results	reference
rabbit, rat, dog	Na ₂ TeO ₃	iv, single: 0.1 - 0.5 mg Te/kg bw	in the first 24 h: $<0.1\%$ was exhaled; the largest concentration was found in kidneys; in heart, lungs, and spleen, concentration was from 1/3 to 1/10 of that of kidneys, but 1.5 to 2 times as much as that of liver; in 5-6 days, 20% of the amount injected was excreted	DeM47b
rabbit, rat, dog	Na ₂ TeO ₃	oral, single; dose(s) not given	3.3% excreted within 6 d	DeM47b
piglet	Te, radio- active in ionic or colloidal form	dermal, single; dose(s) not given	within 15 min, ca. 5% of the activity could be detected deeper than 30 μ m; there was no difference in penetration among 7 different isotopes used	Nor68
rat, 15-day old	Те	oral, feed, 35 d; dose(s) not given	on the 2nd day: Te in cytoplasm of Schwann cells	Duc79
rat	K ₂ TeO ₃	ip; 112 d 2 mg/kg bw (i.e., ca. 0.95 mg Te/kg bw/d	accumulation of Te in the cerebellum	Wal78
rat, male	TeCl ₄	oral, drinking water, 35 d; total ingested dose: 1025 ± 115 mmol Te/kg bw (131 mg Te/kg bw)	concentration in blood: 45 nmol/g; liver: 5.7 nmol/g; kidneys: 2.7 nmol/g; brain: 3.1 nmol/g	Val85

6 Effects and mechanism of action

Human data

In a group of 62 men, who were examined after 15 and 22 months of occupational exposure, the order of frequency of occurrence of symptoms were: garlic odour of the breath, dryness of the mouth, metallic taste, somnolence, garlic odour of the sweat. The odour can remain for months. Its intensity was directly related to the exposure concentration. There was no evidence of Te intoxication (Ste42).

The minimum amount of Te in $Na_2 TeO_3$ required to cause garlic breath varied from 1 to 50 µg per person as a single oral dose (DeM47a).

055-9 Tellurium and tellurium compounds (excluding TeF_6)

Animal data

Acute toxicity data of tellurium and compounds are summarised in Table 2.

Tal	51	e i	2 /	Acute	toxicity	data	of	tel	lurium	and	l compounds	5.
-----	----	-----	-----	-------	----------	------	----	-----	--------	-----	-------------	----

animal species	Te compound	dosing regimen	results	reference
rat	Te	oral	LD ₅₀ : 83 mg/kg bw	Lew92
mouse	Te	oral	LD ₅₀ : 20 mg/kg bw	Lew92
rabbit	Te	oral	LD ₅₀ : 67 mg/kg bw	Lew92
guinea pig	Te	oral	LD ₅₀ : 45 mg/kg bw	Lew92
rat, female rat, male guinea pig mouse	$Te(C_2H_5)_2$	inhalation (no further details)	LC_{50} : 55 mg/m ³ LC_{50} : 54.1 mg/m ³ LC_{50} : 45.1 mg/m ³ LC_{50} : 154.0 mg/m ³	Koz81
rat	Na_2TeO_3	oral	LD ₇₅ : 2.25-2.50 mg/kg bw	Fra36
rat	Na_2TeO_4	oral	LD ₇₅ : 20.0-30.0 mg/kg bw	Fra36
rat	Te or TeO ₂	intratracheal, single dose; sufficient to cause observable stress	after 180 days: no progressive fibrosis	Gea78
rabbit	Na ₂ TeO ₃ Te	iv, single; 50 μg Te/kg bw iv, single; 20-30 mg Te/kg bw	garlic breath; administration of ascorbic acid reduces Te in expired air to 20 or 25% of control garlic breath	DeM47a
rabbit	H ₆ O ₆ Te	iv, single	LD _{lo} : 5.6 mg/kg bw	Lew92
rat	H ₆ O ₆ Te	iv, single	LD _{lo} : 31 mg/kg bw	Lew92
rabbit	H ₆ O ₆ Te	oral, single	LD _{lo} : 56 mg/kg bw	Lew92
mouse	Na ₂ TeO ₃	sc, single; 1.28 mg Te/kg bw	decrease in body temp; increase in gastric content	Wat90

055-10 Health-based Recommended Occupational Exposure Limits

The data on toxicity of tellurium and compounds following repeated exposure are summarised in Table 3.

Table 3	Toxicity	data o	of tellurium	and	compounds	following repeated exposure.

animal species	Te compound	dosing regimen	results	reference
rat	Te, TeO ₂	inhalation, 2 h/d, 13-15 w; differently dispersible aerosols 10-100 mg/m ³	in both cases: 100 mg/m ³ is approx. LD_{50} ; weight loss; irritation of the respiratory tract; loss of fur; haemolysis	San63
rat, guinea pig, mouse	$Te(C_2H_5)_2$	inhalation, chronic (no further data); 1 mg/m ³ (i.e., 0.69 mg Te/m ³)	dermatitis; weight loss; effects on liver enzymes, serum proteins, CNS; haemolytic effects; effects on liver, kidneys, heart, and other organs	Koz81
rat, less than 3-week old	Te	oral, feed, 1-8 d; dose(s) not given	demyelination of sciatic nerves; oedema of nerves; vacuolar degeneration of Schwann cells; recovery occurred despite continued ingestion of Te	Lam70
rat, 3-week old	Te	oral, feed, several days; 10,000 ppm (i.e., ca. 500 mg Te/kg bw/d)	on day 2 and 3: paresis of the hind legs, most severe at day 7, recovery by day 10; demyelination; vacuolar degeneration of Schwann cells	Tak77
rat, 11-week old	Те	idem	no effects	Tak77
rat, 3-4-week old	Te	oral, feed, several days; 12,500 ppm (i.e., ca. 625 mg Te/kg bw/d)	on day 6 and 7: paresis; degeneration of Schwann cells	Ham 86
rat (white)	Те	oral, feed (period unkown); 375, 750, 1500 ppm (i.e., ca. 19, 38 and 75 mg Te/kg bw/d)	at 1500 ppm: some effect on growth; no pathological effects; at all dose levels: garlic-like breath within 24-72 h, disappearing 1-2 days after discontinuation of treatment	DeM46
rat (white)	TeO ₂	oral, feed, 26 d; 375, 750,1500 ppm as Te (i.e., ca. 19, 38, 75 mg Te/kg bw/d)	at 1500 ppm: rats died; at other dose levels: no growth; loss of hair; redness and oedema of the digits; temporary paralysis of hind legs; oligouria or anuria; necrosis of liver and kidneys	DeM48
rat, 15-day old	Те	oral, feed, 35 d; dose(s) not given	within 24 h: demyelination of sciatic nerve; on day 3: paralysis of the hind legs lasting 7-10 days; after 7 days or more: decreased motor nerve conduction velocity; recovery of paralysis and demyelination	Duc79
pig, weanling	TeCl ₄	oral, feed, 10 wk; 500 ppm	necrosis of cardiac and skeletal muscle in 50-65% of the pigs; decrease in blood GSH activity	Vle81

055-11 Tellurium and tellurium compounds (excluding TeF₆)

Table 3 Continued.

animal species	Te compound	dosing regimen	results
rat	Te	oral, feed, 5 mo; 3300 ppm (i.e., ca. 165 mg Te/kg bw/d	impaired learning ability even after discontinuation for 3 months
rat, rabbit	Na ₂ TeO ₃	oral, 7 mo; 0.005 mg/kg bw/d (i.e., ca. 0.00285 mg Te/kg bw/d)	reduced catalase activity, sulfhydryl, and ascorbic acid concentrations; altered conditioned reflexes and brain morphology
rat, rabbit	Na ₂ TeO ₃	oral, 6 mo; 0.0005 mg/kg bw/d (i.e., ca. 0.00028 mg Te/kg bw/d)	no effects
rat (n = 50), rabbit (n = 25)	Na ₂ TeO ₃	oral, 7 mo; 0.005, 0.05, 0.5 mg/kg bw/d (i.e., ca. 0.00285-0.28 mg Te/kg bw/d)	necrosis of liver and intestines; effects on CNS; altered brain morphology
rat, rabbit	Na ₂ TeO ₄	oral (period unkown); 1, 10, 25, 50 mg/kg bw/d (i.e., ca. 0.5, 5.4, 13.4, 26.8 mg Te/kg bw/d)	necrosis of liver and intestines
mouse	Te ⁶⁺	oral, drinking water, lifetime; 3 ppm	no effect on organ content of Cr, Cu, Mg, Zn
rat	K ₂ TeO ₃	ip; 112 d 2 mg/kg bw/d (i.e., ca. 0.95 mg Te/kg bw/d)	impaired growth; increased activity; no effect on learning ability

The results found by Len67 were not confirmed by more recent studies; may be there was a calculation error in the low dose.

Carcinogenicity

Sodium tellurite or potassium tellurate was given in the drinking water to mice during lifetime. The dose of Te was 2 ppm. Groups of 54 males and 54 females received either tellurite or tellurate. The control group for the tellurite-dosed animals consisted of 51 males and 56 females, the control group for the tellurate-dosed animals consisted of 54 males and 48 females. Males fed tellurate had an increased lifespan, females fed tellurite had a decreased lifespan. Te-fed mice were reported to be less active than their controls, to appear unhealthy, and to have poor coats. Since there was no significant difference in tumour incidence between the tellurite-fed and tellurate-fed mice, the data on tumour incidences were pooled for both the exposed animals and the

055-12 Health-based Recommended Occupational Exposure Limits

unexposed controls. Moreover, the tumour data of males and females were also pooled. Of the 216 mice fed tellurite or tellurate, 187 were necropsied and 90 were examined histologically. In the mice subjected to histological examination, there were 7 lymphoma-leukaemias, 5 lung carcinomas, 1 lung adenoma, several fibromas, and 1 (benign) adrenocortical adenoma. In the 119 control animals examined histologically (total number: 209; number necropsied: 180), there were 2 lymphoma-leukaemias, 7 lung carcinomas, 1 carcinoma of unknown origin, and 13 benign tumours of, amongst others, breast and ovary (Sch72). The committee agrees with the authors that the study did not produce evidence of carcinogenic potential of tellurium. The committee notes the considerable difference between the number of animals necropsied and the number of animals examined histologically. Because of this remarkable difference which was not discussed at all by Schroeder and Mitchener, the committee questions the validity of the long-term carcinogenicity study.

Sodium tellurite was given in the drinking water to rats during lifetime. The dose of Te⁴⁺ was 2 ppm. [The intake was estimated to be 0.150 mg Te/kg bw/d (Sch68).] When the rats were 21 months old, an epidemic of pneumonia caused considerable loss of life in all groups. The group size before and after the epidemic of pneumonia, at the age of 28 months was: 52 and 36 males and 53 and 42 females; the control groups consisted of 52 and 38 males and 44 and 35 females, respectively. Tellurite had no influence on lifespan. The body weight of the exposed males and females at 30 months was larger than the controls; however, treated and control group were losing weight between 24 and 30 months of age. At 36 months, the treated females weighed more than their controls, the treated males weighed as much as their controls. Treatment did not induce a statistically significant increase in the incidence of total or malignant tumours (total: 36.4% vs. 30.8% in controls; malignant: 18.2% vs. 16.9% in controls) (Sch71). The committee notes the difference between the number of animals necropsied and the number of those examined histologically (controls: 75 and 65, respectively; tellurite treated: 67 vs. 44, respectively), probably due to severe post-mortem changes, and questions the validity of this study.

Mutagenicity and genotoxicity

TeO₂ was positive in a DNA repair test in *E. coli* strains WP2, WP2*uvrA*, CM571, and WP100 (Yag77).

 $TeCl_4$, $Na_2H_4TeO_6$, and Na_2TeO_3 were positive in a DNA repair test (rec-assay) in *B. subtilis* strains H17 and M45 (Kan80).

055-13 Tellurium and tellurium compounds (excluding TeF_6)

 Na_2TeO_3 induced mutations in a spot test with *S. typhimurium* strain TA98 (Kan80).

 $Na_2H_4TeO_6$ induced mutations in a spot test with *S. typhimurium* strains TA1535 and TA100 (Kan80).

 $(NH_4)_6TeO_6$ induced chromatid breaks in human leukocytes *in vitro* (Pat72). Na₂H₄TeO₆ gave equivocal results in a spot test with *S. typhimurium* TA98 (Kan80).

 Na_2TeO_3 did not induce mutations in a spot test with *E. coli* strains B/r WP2, WP2, and with *S. typhimurium* strains TA100, TA1535, TA1537 and TA1538 (Kan80).

 Na_2TeO_3 did not induce chromatid breaks in human leukocytes *in vitro* (Pat72).

 $Na_2H_4TeO_6$ did not induce mutations in a spot test with *E. coli* strains B/r WP2, WP2, and with *S. typhimurium* strains TA1537 and TA1538 (Kan80).

The committee is of the opinion that the positive outcome in several studies indicates the effect of redox cycling; this is a high-dose phenomenon and does not support a carcinogenic mechanism.

Reproduction toxicity

The data on reproduction toxicity are presented in Table 4.

7 Existing guidelines

The current administrative occupational exposure limit (MAC) for tellurium and tellurium compounds in the Netherlands is 0.1 mg/m³, 8-hour TWA (measured as Te).

Existing occupational exposure limits for tellurium and tellurium compounds in some European countries and in the USA are summarised in the annex.

8 Assessment of health hazard

Human data

In humans, occupational exposure to tellurium and its compounds leads to symptoms such as garlic odour of the breath, dryness of the mouth, metallic taste, somnolence, garlic odour of the sweat. The odour can remain for months

055-14 Health-based Recommended Occupational Exposure Limits

Table 4	Reprodcution	toxicity dat	a on tellurium	and compounds.

animal species	Te compound	dosing regimen	results	reference
rat, female	Те	oral, feed; during pregnancy; 3000 ppm (i.e., ca. 14 mg/animal/d)	no data on maternal toxicity; all pups of 50% of the litters had hydrocephalus; no brain anomalies.	Duc70
rat, female (Wistar; n=5 per dose); one control group pair-fed, one control group fed <i>ad lib</i>	TeO ₂	subcutaneous; GD 15-19; 500 µmol Te/kg bw (i.e., ca. 64 mg Te/kg bw/d)	dams: reduced food consumption and weight gain; centrilobular fatty changes in the liver; no histological changes in any organ. Fetuses: 100% hydrocephalus, exophthalmia, oedema; 39-47% ocular haemorrhage; reduced fetal weight and length. No effect was attributable to low food intake.	Per88a
rat, female (Wistar; n=10 per dose)	TeO ₂	subcutaneous; GD 15-19; 0, 10, 100, 500, 1000 μmol Te/kg bw/d (i.e., ca. 0, 1.3, 12.8, 64, 128 mg Te/kg bw)	dams: reduced weight gain at the two higest dose levels; in the highest dose group, 4 dams died. Fetuses: at the two highest dose levels: 11 and 81% mortality, resp; dose-related decrease in fetal weight, increase in undescended testes, hydrocephalus and oedema all over the body, exophthalmia, ocular haemorrhage, umbilical hernia. At 12.8 mg/kg: fetal toxicity in the absence of maternal toxicity (100% hydrocephalus and oedema). At 1.3 mg/kg: no effects.	Per88b
rat, female	Те	intramuscular; GD 9 and 10; 13 mg/kg bw	no data on maternal toxicity; hydrocephalus in the offspring, visible only 5-6 days after birth.	Agn72
rat, female (Sprague Dawley; n=22 per dose)	Те	oral, feed; GD 6-15; 0, 30, 300, 3000, 15,000 ppm (i.e., ca. 0, 2.2, 19.6, 166 and 633 mg/kg bw/d on GD 6-10; and 0, 1.9, 18, 173 and 579 mg/kg bw/d on GD 11-15; calculated by the authors)	maternal toxicity at 300 ppm; no effect on pregnancy rate, litter size, dead or resorbed implantations, fetal sex ratio. In 2 highest dose groups: skeletal and soft tissue malformations (primarily hydrocephalus).	Joh88
rabbit, female (New Zealand; n=17 per dose)	Te	oral, feed; GD 6-18; 0, 17.5, 175, 1750, 5250 ppm (i.e., ca. 0, 0.74, 7.6, 53, 101 mg/kg bw/d; based on food intake and maternal body weight given by the authors)	maternal toxicity at 1750 ppm; no effect on pregnancy rate, litter size, dead or resorbed implantations, fetal sex ratio. Highest dose group: slightly elevated evidence of delayed skeletal development and non-specific abnormalities.	Joh88

055-15 Tellurium and tellurium compounds (excluding TeF_6)

(Ste42). The most important indication of exposure to tellurium is the garlic-like odour of the breath. Probably, dimethyltelluride is formed in the body and exhaled. However, its formation in humans and laboratory animals was not proven. Only in bacteria and fungi, the formation of dimethyltelluride from potassium tellurite was established (Cha90).

Animal data

Tellurium element

Inhalation of tellurium aerosols by rats resulted in weight loss, irritation of the respiratory tract, loss of fur, and haemolysis. It is not clear what the threshold concentration for these effects is. The range used in the experiment was 10-100 mg/m³ (San63). This Russian study was only available in abstract form, despite considerable effort to obtain the full paper.

Tellurium induced neurotoxicity in rats after feeding high doses (from 500 mg/kg), in the form of degeneration of Schwann cells and demyelination. The rat was the only species studied in this respect (Duc79, Ham86, Lam70, Tak77).

At maternally toxic doses, administered during organogenesis, tellurium induced skeletal malformation and hydrocephalus in the offspring of rats (at doses of 18-20 mg/kg bw and higher), and delayed skeletal development and non-specific abnormalities in offspring of rabbits (at doses of 53 mg/kg bw and higher) (Joh88).

Due to lack of data, the committee cannot indicate a critical effect or a target organ for toxicity after inhalation exposure to tellurium.

Tellurium compounds

The tellurium compounds will be evaluated groupwise, according to their water solubility. Only one compound was found to be soluble (H_6TeO_6), 2 are insoluble (TeO_2 , TeO_3), 6 were reactive ($TeBr_2$, $TeCl_2$, TeI_4 , $TeBr_4$, $TeCl_4$, TeF_4), one was an unstable gas (H_2Te), and of the remaining compounds, the water solubility could not be found. Apparently, the valence state of tellurium was not decisive for the water solubility of the compound.

 H_6TeO_6 (water soluble)

055-16 Health-based Recommended Occupational Exposure Limits

Of this compound only acute toxicity data from animals are available without reporting the signs of toxicity before death (Lew92).

TeO_2 , TeO_3 (water insoluble)

No animal data have been found on the toxicity of TeO₃.

The investigators who studied the inhalation exposure to tellurium aerosol in rats, also studied inhalation exposure to TeO_2 in rats. At the same concentration range, 10-100 mg/m³, the effects were the same as those after exposure to tellurium (San63). Due to lack of data, the committee cannot indicate a threshold for these effects.

Feeding of doses of TeO_2 of 19 mg/kg bw and higher (expressed as Te) to rats for 26 days induced symptoms similar to those after inhalation exposure: no growth, loss of hair, oedema of digits and temporary paralysis of the hind legs, and necrosis of liver and kidneys. In this study, haemolytic effects were not mentioned (DeM48). Subcutaneous injection during organogenesis of 12.8 mg/kg bw (expressed as Te) induced hydrocephalus and oedema in 100% of the offspring of rats, without maternal toxicity. A tenfold lower dose did not induce any reproductive effects (Per88b).

Due to lack of data, the committee cannot indicate a critical effect or a target organ for toxicity for the tellurium oxides.

TeBr₂, TeCl₂, TeI₄, TeBr₄, TeCl₄, TeF₄ (reactive)

Only one study is available, in which TeCl_4 is fed to weanling pigs at a concentration of 500 mg/kg feed (expressed as Te). No control group was included. Muscle necrosis and a decrease in blood GSH activity was found (Vle81). Since only one dose was used, the committee cannot indicate a threshold dose for these effects.

Due to lack of data, the committee cannot indicate a critical effect or a target organ for toxicity of reactive tellurium compounds.

 H_2Te (unstable)

No data are available.

Te compounds with unknown water solubility

055-17 Tellurium and tellurium compounds (excluding TeF_6)

The acute toxicity of diethyltelluride was rather high after inhalation exposure. LC_{50} values were 54-55 mg/m³ and 154 mg/m³ for rats and mice, respectively (Koz81). Inhalation of 1 mg/m³ for an unknown period of time induced a variety of effects like dermatitis, weight loss, haemolysis, and effects on internal organs (Koz81). Due to lack of data, the committee cannot indicate a threshold dose for these effects.

Although the committee questions the validity of the studies, no evidence for a carcinogenic activity of tellurium was found in long-term studies in which rats and mice were given tellurite or tellurate in the drinking water at low levels (2 ppm). Due to lack of data, the committee cannot indicate a critical effect or a target organ for toxicity of Te compounds with unknown water solubility.

Overall conclusion

Since occupational exposure concerns the inhalation route and the kinetics of tellurium compounds differ after intravenous injection from that after oral dosing, a study using the inhalation route should be taken as a starting point in the risk assessment. The longest exposure study is that by Sandratskaya (San63). The author studied the effects of inhalation exposure of Te or TeO_2 aerosol in rats during 13-15 weeks. However, the paper lacks details in study design and data presentation.

The committee considers the toxicological database on tellurium and tellurium compounds too poor to justify recommendation of a health-based occupational exposure limit.

The committee concludes that there is insufficient information to comment on the present MAC level. The committee expects differences in valence state of the various tellurium compounds to play an important role in the toxic effects.

Tellurium can penetrate the skin (Nor68). However, since there are no quantitative data, the committee is unable to pronounce upon the assignment of a skin notation.

055-18 Health-based Recommended Occupational Exposure Limits

References

ACG99	American Conference of Governmental Industrial Hygienists (ACGIH). Tellurium and compounds.
	In: TLVs® and other occupational exposure values - 1999. [CD-ROM]. Cincinnati OH, USA:
	ACGIH [®] , 1999.
ACG02a	American Conference of Governmental Industrial Hygienists (ACGIH). Guide to occupational
	exposure values - 2002. Cincinnati OH, USA: ACGIH®, Inc, 2002: 122.
ACG02	American Conference of Governmental Industrial Hygienists (ACGIH). 2002 TLVs® and BEIs®.
	Threshold Limit Values for chemical substances and fysical agents. Biological Exposure Indices.
	Cincinnati OH, USA: ACGIH*, Inc, 2002: 55.
Agn72	Agnew WF, Curry E. Period of teratogenic vulnerability of rat embryo to induction of
	hydrocephalus by tellurium. Experientia 1972; 28: 1444-5 (cited from Chem Abstr 78: 67809z).
Amd47	Amdur ML. Tellurium: accidental exposure and treatment with BAL in oil. Occup Med 1947; 3:
	386-91 (cited from Chem Abstr 41:7016f).
Amd58	Amdur ML. Tellurium oxide. An animal study in acute toxicity. AMA Arch Ind Health 1958; 17:
	665-7 (cited from Chem Abstr 52:14869i).
Ano94	Anonymous. Dimethyltelluride. In: Dictionary of natural products. Buckingham J, ed. London,
	England: Chapman & Hall, 1994: 1897.
Arb00a	Arbejdstilsynet. Grænseværdier for stoffer og materialer. Copenhagen, Denmark: Arbejdstilsynet,
	2000; At-vejledning C.0.1.
Arb00b	Arbetarskyddstyrelsen. Hygieniska gränsvärden och åtgärder mot luftföroreningar. Solna, Sweden:
	National Board of Occupational Safety and Health, 2000: 60 (Ordinance AFS 2000/3).
Bel94	Beliles RP, Beliles EM. Phosphorus, selenium, tellurium, and sulfur. In: Clayton GD, Clayton FE,
	eds. Toxicology. 4th ed. New York, USA: John Wiley & Sons, Inc, 1994; 801-5, 827 (Patty's
	industrial hygiene and toxicology; Vol II).
Bud96	Budavari S, O'Neill MJ, Smith A, et al., eds. The Merck index. An encyclopedia of chemicals,
	drugs, and biologicals. 12th ed. Whitehouse Station, NJ, USA: Merck & Co, Inc, 1996: 1560.
CEC00	Commission of the European Communities (CEC). Commission Directive 2000/39/EC of 8 June
	2000 establishing a first list of indicative occupational exposure limit values in implementation of
	Council Directive 98/24/EC on the protection of the health and safety of workers from the risks
	related to chemical agents at work. Official Journal of the European Communities 2000; L142
	(16/06/2000): 47-50.
Cha90	Chasteen TG, Silver GM, Birks JW, et al. Fluorine-induced chemiluminescence detection of
	biologically methylated tellurium, selenium, and sulfur compounds. Chromatographia 1990; 30:
	181-5.
DeM46	De Meio RH. Tellurium. I. The toxicity of ingested elementary tellurium for rats and rat tissues. J
	Ind Hyg Toxicol 1946; 28:229-32 (cited from Chem Abstr 40:7406 ³).

055-19 Tellurium and tellurium compounds (excluding TeF_6)

- DeM47a De Meio RH. Tellurium. II. Effect of ascorbic acid on the tellurium breath. J Ind Hyg Toxicol 1947;
 29: 393-5 (cited from Chem Abstr 42:988a).
- DeM47b De Meio RH, Henriques FC Jr. Tellurium IV. Excretion and distribution in tissues studied with a radioactive isotope. J Biol Chem 1947; 169: 609-23 (cited from Chem Abstr 41:7432f).
- DeM48 De Meio RH, Jetter WW. Tellurium III. The toxicity of ingested tellurium dioxide for rats. J Ind Hyg Toxicol 1948; 30: 53-8 (cited from Chem Abstr 42:1665i).
- DFG02 Deutsche Forschungsgemeinschaft (DFG): Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. MAK- und BAT-Werte-Liste 2002. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte. Weinheim, FRG: Wiley-VCH, 2002: 103 (rep no 38).
- Dijkstra F, Plum M, Geerdes A. An unexpected odor problem in the biological treatment of chemical wastewater. Water Sci Technol 1988; 20: 83-90.
- Dob70 Dobryakova GV. [Dynamics of the removal of tellurium-127 and ruthenium-106 from lungs after intratracheal administration.] Russian. Radioaktiv Izotopy Vnesh Srede Organizme 1970; 57-63 (cited from Chem Abstr 74:121004r).
- Dru72 Dru D, Agnew WK, Greene E. Effects of tellurium ingestion on learning capacity of the rat. Psychopharmacologia 1972; 24: 508-15 (cited from Chem Abstr 77:29898z).
- Duc70 Duckett S. Fetal encephalopathy following ingestion of tellurium. Experientia 1970; 26: 1239-41 (cited from Chem Abstr 74:30483e).
- Duc79 Duckett S, Said G, Streletz LG, et al. Tellurium-induced neuropathy: correlative physiological, morphological and electron microprobe studies. Neuropathol Appl Neurobiol 1979; 5: 265-78 (cited from Chem Abstr 91:169381q).
- Ein84 Einbrodt HJ, Michels S. Tellur. In: Merian E (ed). Metalle in der Umwelt : Verteilung, Analytik und biologische Relevanz. Weinheim, FRG: VCH Verlagsgesellschaft mbH, 1984: 561-70 (Chapter II.21).
- Eln69 El'nichnykh LN, Lenchenko VG. [Histomorphological changes in animal organs during poisoning with tellurium compounds.] Russian. Klin Patog Profil Profzabol Khim Etiol Predpr Tsvet Chern Met 1969; 2: 155-60 (English translation).
- Fis91 Fishbein L. Tellurium. In: Merian E. ed. Metals and their compounds in the environment; occurrence, analysis, and biological relevance. Weinheim, FRG: VCH Verlagsgesellschaft mbH, 1991; 1211-26.
- Fra36 Franke KW, Moxon AL. The minimum fatal doses of selenium, tellurium, arsenic and vanadium. J Pharmacol 1936; 58: 454-9 (cited from Chem Abstr 31:1105).
- Gea78 Geary DL Jr, Myers RC, Nachreiner DJ, et al. Tellurium and tellurium dioxide: single endotracheal injection to rats. J Am Ind Hyg Assoc 1978; 39: 100-9 (cited from Chem Abstr 88:131608u).
- Ham86 Hammang JP, Duncan ID, Gilmore SA. Degenerative changes in rat intraspinal Schwann cells following tellurium intoxication. Neuropathol Appl Neurobiol 1986; 12: 359-70 (cited from Chem Abstr 107:2123u).

055-20 Health-based Recommended Occupational Exposure Limits

How92	Howard PH, Neil M, ed. Dictionary of chemical names and synonyms. Chelsea MA, USA: Lewis Publishers, 1992.							
HSE02	Health and Safety Executive (HSE). EH40/2002. Occupational exposure limits 2002. Sudbury (Suffolk), England: HSE Books, 2002: 26.							
Joh88	Johnson EM, Christian MS, Hoberman AM, et al. Developmental toxicology investigation of tellurium. Fundam Appl Toxicol 1988; 11: 691-702.							
Kan80	Kanematsu N, Hara M, Kada T. Rec assay and mutagenicity studies on metal compounds. Mutat Res 1980; 77: 109-16.							
Kor65	Korolev GK. [Characteristics of the behavior of ¹³² Te and ¹³¹ I in the rat.] Russian. Med Radiol 1965; 10: 33-4 (cited from Chem Abstr 64:8611g).							
Koz81	Kozik IV, Novikova NP, Sedova LA, et al. [Toxicological characterization of diethyl telluride.] Russian. Gig Tr Prof Zabol 1981; 10: 51-3 (cited from Chem Abstr 96:29558f).							
Kro91a	Kron T, Wittmaack K, Hansen C, et al. Stable isotopes for determining biokinetic parameters of tellurium in rabbits. Anal Chem 1991; 63: 2603-7.							
Kro91b	Kron T, Hansen Ch, Werner E. Renal excretion of tellurium after peroral administration of tellurium in different forms to healthy human volunteers. J Trace Elem Electrolytes Health Dis 1991; 5: 239-44.							
Lam70	Lampert P, Garro F, Penschew A. Tellurium neuropathy. Acta Neuropathol 1970; 15: 308-17 (cited from Chem Abstr 79:122401h).							
Len67	Lenchenko VG. [Data to substantiate the hygienic standard content of tellurium in water bodies.] Russian. Gig Sanit 1967; 32: 15-8 (cited from Chem Abstr 66:88573k).							
Len69	Lenchenko VG. [Functional state of the central nervous system during experimental chronic tellurium poisoning.] Klin Patog Profil Profzabol Khim Etiol Predpr Tsvet Chern Met 1969; 2: 148-54 (English translation).							
Lew92	Lewis RJ Sr, ed. Sax's dangerous properties of industrial materials. 8th ed. New York, USA: Van Nostrand Reinhold, 1992; 3186-8.							
Lid96	Lide DR, Frederikse HPR, ed. CRC Handbook of chemistry and physics. 77th ed. Boca Raton FL, USA: CRC Press, 1996; 4-29, 4-89, 6-111, 6-112, 11-78-9.							
Mik77	Mikeev VS, Nikolaev LI, Verkhovskii VY, et al. [Study of the decomposition of hydrogen telluride occurring in the form of deflagration combustion]. Russian. Izv Akad Nauk SSSR, Ser Khim 1977; (9): 2117-9 (cited from Chem Abs 88: 25066f).							
Mos60	Moskalev YI. Distribution of Te ^{127,129} in the rat. Med Radiol 1960; 5: 54-60 (cited from Chem Abstr 55:27468i).							
Mos64	Moskalev YI. [Distribution of antimony-124 and tellurium-127.] Russian. Raspredelenie, Biol Deistvie, Uskorenie Vyvedeniye Radioaktivn Izotopov Sb Rabot 1964; 62-79 (cited from Chem Abstr 62:9568f).							

055-21 Tellurium and tellurium compounds (excluding TeF_6)

Nor68	Norets TA, Il'in LA, Shvydko NS, et al. [Calculation of absorbed doses in piglet skin during its contamination with radioactive substances.] Russian. Radiats Med Vses Nauch-Tekh Konf 1968 (Pub 1972) 233-9 (cited from Chem Abstr 78:68793b)
Pat72	Paton GR, Allison AC. Chromosome damage in human cell cultures induced by metal salts. Mutat Res 1972; 16: 332-6.
Per88a	Perez-d'Gregorio RE, Miller RK, Baggs RB. Maternal toxicity and teratogenicity of tellurium
Per88b	Perez-d'Gregorio RE, Miller RK. Teratogenicity of tellurium dioxide: prenatal assessment. Teratology 1988; 37: 307-16.
Roy93	Roychowdhury M. A review of safety and health hazards of metalorganic compounds. Am Ind Hyg Assoc J 1993; 54: 607-14.
San63	Sandratskaya SE. Biological effects of rare, dispersed, and other metals and their compounds used in industry - tellurium. Toksikol Redkikh Metal 1963; 117-35 (English translation).
Sca92	Scansetti G. Exposure to metals that have recently come into use. Sci Total Environ 1992; 120: 85-91.
Sch68	Schroeder HA. Serum cholesterol levels in rats fed thirteen trace elements. J Nutr 1968; 94: 475-80.
Sch71	Schroeder HA, Mitchener M. Selenium and tellurium in rats: effect on growth, survival and tumors. J Nutr 1971; 101: 1531-40.
Sch72	Schroeder HA, Mitchener M. Selenium and tellurium in mice. Arch Environ Health 1971; 24: 66-71.
Sch76	Schroeder HA, Nason AP. Interactions of trace metals in mouse and rat tissues; zinc, chromium, copper and manganese with 13 other elements. J Nutr 1976; 106; 198-203.
Slo70a	Slouka V. [Distribution and excretion of intravenous radiotellurium in the rat.] Czech. Sb Ved Pr VLVDU Hradci Kralove 1970; 47: 3-19 (cited from Chem Abstr 75:59454c).
Slo70b	Slouka V. [Kinetics of orally administered radiotellurium in the rat.] Czech. Sb Ved Pr VLVDU Hradci Kralove 1970; 47: 21-43 (cited from Chem Abstr 75:59472g).
Ste42	Steinberg HH, Massari SC, Miner AC, et al. Industrial exposure to tellurium: atmospheric studies and clinical evaluation. J Ind Hyg Toxicol 1942; 24: 183-92.
SZW02	Ministerie van Sociale Zaken en Werkgelegenheid (SZW). Nationale MAC-lijst 2002. The Hague, the Netherlands: Sdu, Servicecentrum Uitgevers, 2002: 40.
Tak77	Takauchi S. [Tellurium neuropathy in weanling albino rats.] Japanese. Hyogo Ika Daigaku Igakkai Zasshi 1977; 2: 73-80 (cited from Chem Abstr 91:205301z).
Tay97	Taylor A. Biochemistry of tellurium. Biol Trace Elem Res 1996; 55: 231-9.
TRG00	TRGS 900: Grenzwerte in der Luft am Arbeitsplatz; Technische Regeln für Gefahrstoffe. BArbBl 2000; 2.
Val85	Valkonen S, Savolainen H. Tellurium burden and neurochemical effects in moderate peroral exposure. Bull Environ Contam Toxicol 1985; 34: 170-4.

055-22 Health-based Recommended Occupational Exposure Limits

- Vle81 van Vleet JF, Boon GD, Ferrans VJ. Induction of lesions of selenium-vitamin E deficiency iin weanling swine fed silver, cobalt, tellurium, zinc, cadmium, and vanadium. Am J Vet Res 1981; 42: 789-99 (cited from Chem Abstr 95:36554j).
- Wal78 Walbran BB, Robins E. Effects of central nervous system accumulation of tellurium on behavior in rats. Pharmacol Biochem Behav 1978; 9: 297-300 (cited from Chem Abstr 90:17139h).
- Wat90 Watanabe C, Suzuki T, Ohba T, et al. Transient hypothermia and hyperphagia induced by selenium and tellurium compounds in mice. Toxicol Lett 1990; 50: 319-26.
- Yagi T, Nishioka H. DNA damage and its degradation by metal compounds. Doshisha Daigaku Rikogaku Kenkyu Hokoku 1977; 18: 63-70 (cited from Chem Abstr 89:54935q).
- Yak74 Yakhimovich NP. [Odor threshold and reflex effect on an organism of small concentrations of selenium and tellurium dioxide.] Russian. Vopr Eksp Klin Ter Profil Prom Intoksikatsii 1974; 156-9 (cited from Chem Abstr 84:79053k).

055-23 Tellurium and tellurium compounds (excluding TeF_6)

Annex

~			11 1. 0		1 . 11 .		
()ccu	national	exposure	limits to	· felluruum	and fellurium	i compounds in	various countries
occu	putional	enposare	minus ioi	tentannann	una tenunun	compounds m	various countries.

country -organisation	occupational exposure limit ^a		time-weighted average	type of exposure note ^b limit	reference ^c
	ppm mg/m ³				
the Netherlands - Ministry of Social Affairs and Employment	-	0.1	8 h	administrative	SZW02
Germany - AGS - DFG MAK-Kommission	- - -	0.1^{d} 0.4^{d} 0.1^{d} 0.2^{d}	8 h 15 min 8 h 15 min ^e		TRG00 DFG02
Great Britain - HSE	-	0.1 ^f	8 h	OES	HSE02
Denmark	-	0.1° 0.1	8 h 8 h		Arb00b Arb00a
USA - ACGIH - OSHA - NIOSH	- -	0.1 ^f 0.1 0.1	8 h 8 h 10 h	TLV PEL REL	ACG02b ACG02a ACG02a
European Union - SCOEL	-	-			CEC00

As tellurium.

b S = skin notation; which means that skin absorption may contribute considerably to the body burden; sens = substance can cause sensitisation.

Reference to the most recent official publication of occupational exposure limits. Measured as the inhalable fraction of the aerosol. с

d

е Maximum number per shift: 4, with a minimum interval between peaks of 1 hour.

Except hydrogen telluride. Total dust. f

g

055-24 Health-based Recommended Occupational Exposure Limits