m-Phthalodinitrile

(CAS reg no: 626-17-5)

Health-based Reassessment of Administrative
Occupational Exposure Limits

Committee on Updating of Occupational Exposure Limits,
a committee of the Health Council of the Netherlands

1 Introduction

The present document contains the assessment of the health hazard of m-phthalodinitrile by the Committee on Updating of Occupational Exposure Limits, a committee of the Health Council of the Netherlands. The first draft document was prepared by MA Maclaine Pont, M.Sc. (Wageningen University, Wageningen, the Netherlands).

The evaluation of the toxicity of m-phthalodinitrile has been based on the review by the American Conference of Governmental Industrial Hygienists (ACG99). Where relevant, the original publications were reviewed and evaluated as will be indicated in the text. In addition, literature was retrieved from the data bases Toxline, Medline, and Chemical Abstracts, covering the period 1981 until July 1999, 1966 until November 1999, and 1937 until September 1999, respectively, and using the following key words: benzenedcarbonitrile, isoftalodinitrile, isoalodonitrile, isophthalodinitrile, isophthalonitrile, 1,3-benzenedcarbonitrile, dicyanobenzene, or 626-17-5. The final literature search has been carried out in November 1999.

In April 2001, the President of the Health Council released a draft of the document for public review. The committee received no comments.

2 Identity

name: m-phthalodinitrile
synonyms: 1,3-benzenedcarbonitrile; m-dicyanobenzene; 1,3-dicyanobenzene; dinitrile of isophthalic acid; isopthalodinitrile; isophthalonitrile; m-PDN; IPN
molecular formula: C₈H₄N₂
structural formula:

CAS reg no: 626-17-5

Data from How92.
Pure \textit{m}-phthalodinitrile is a crystalline powder (BUA88), forming when recrystallized from alcohol (ACG99). The industrial product is stated to be at least 98% pure, containing \textit{4}-methylbenzonitrile (max 1.5%), \textit{m}-benzenedicarbonitrile (max 0.5%), and benzonitrile (max 0.5%) as impurities (BUA88).

3 Physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight</td>
<td>128.1</td>
</tr>
<tr>
<td>Boiling point</td>
<td>288°C (sublimes)</td>
</tr>
<tr>
<td>Melting point</td>
<td>162°C</td>
</tr>
<tr>
<td>Flash point</td>
<td>-</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>at 25°C: 0.8 Pa</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>slightly soluble in (hot) water</td>
</tr>
<tr>
<td>Log \textit{P} \text{octanol/water}</td>
<td>0.8 (experimental); 1.09 (estimated)</td>
</tr>
<tr>
<td>Conversion factors \textit{P} \text{octanol/water}</td>
<td>not applicable</td>
</tr>
</tbody>
</table>

4 Uses

\textit{m}-Phthalodinitrile is used as an intermediate in the manufacture of polyurethane paints and varnishes, pharmaceuticals, and agricultural chemicals, such as chlorothalonil (the 2,4,5,6-tetrachloro derivative of \textit{m}-phthalodinitrile) (ACG99, BUA88).

5 Biotransformation and kinetics

No data have been found.

6 Effects and mechanism of action

Human data

No data have been found. In a 15-year review of industrial experience with \textit{m}-phthalodinitrile, published in 1969, no adverse effects were reported (ACG99).
Animal data

m-Phthalodinitrile was not a skin irritant in rabbits. No evidence of irritation (erythema, oedema) was observed at levels of 2000 mg/kg or 500 mg total dose (ACG99) or when a 50% aqueous paste of *m*-phthalodinitrile was applied under occlusion for 15 minutes (followed by wash-off procedure) or 20 hours (no wash off) (Zel69). No irritation was observed in the eyes of rabbits after single instillation of 50 mg into the conjunctival sac for 5 minutes (ACG99). However, in a separate experiment, a 50% aqueous paste induced marked intravascular injections (exposure period unknown; observation period: >8 days) (Zel69). No irritation was observed in the eyes of rabbits after single instillation of 50 mg into the conjunctival sac for 5 minutes (ACG99). However, in a separate experiment, a 50% aqueous paste induced marked intravascular injections (exposure period unknown; observation period: >8 days) (Zel69).

None of a group of rats (number, strain, and sex unknown) subjected to 1-hour inhalation exposures of concentrations of *m*-phthalodinitrile up to 8970 mg/m³ showed any treatment-related effects. Particle size was over 2.2 µm (i.e., particles passed an 18-mesh screen (1/18 inch)), but particle size distribution and what portion of the stated air concentrations were respirable were not known (ACG99).

The following oral LD₅₀s have been found: rat: >5000 mg/kg bw, guinea pig: 370 mg/kg, rabbit: 350 mg/kg, and mouse: 178 mg/kg (Lew92).

Rats survived an 8-hour exposure to air saturated with *m*-phthalodinitrile (i.e., air saturated with volatile parts of the test substance at 20°C*; observation time: 7 days) (Zel69).

In subacute inhalation studies, groups of rats (number, strain, sex not known) were exposed to actual aerosol concentrations of *m*-phthalodinitrile of 190 or 1250 mg/m³, 6 hours/day, 5 days/week, for 2 weeks. No deaths occurred in the control or experimental groups. Both experimental groups showed decreased food consumption and reduced body weight. After 7 days, half the rats in the low exposure group exhibited alopecia. Rhinorrhea was evident after the first exposure at 1250 mg/m³ and it continued throughout the study. Diarrhoea occurred on day 2 in the low-concentration group; diarrhoea continued throughout the rest of the exposure period in the high-concentration group. Histological examination of lungs, trachea, and liver and kidneys of control and treated animals did not reveal any exposure-related alterations. Pulmonary changes such as inflammation of alveoli and bronchioles were present in both control and exposed groups, and the incidence of pulmonary inflammation did not follow a dose-response relationship. Thus, the pulmonary inflammation was not considered compound/exposure related (unpublished study from 1972, cited

* The (theoretic) concentration in saturated air can be calculated using the formula: (vapour pressure in Pa x 10⁶ ppm)/10⁵ Pa. Using a vapour pressure of 0.8 Pa (at 25°C), the committee estimates that these animals could have been exposed to, at most, 8 ppm or (roughly) 40 mg/m³.
in ACG99). Since the original study as well as details, such as, for instance, particle size and particle size distribution, were not available, the committee could not evaluate this study properly.

Dermal toxicity studies were performed in rabbits by applying doses of 500, 1000, or 2000 mg/kg bw to the intact or abraded skin during 6 hours/day, 5 days/week, for 3 weeks. Occasional, slight local skin reactions were observed. Systemic toxicity was limited to increased organ size (but without histological change) at the two high dose levels and reduced body weight in females at the highest dose. Otherwise, body weight changes were comparable in control and treated groups. There were no compound-related changes in haematology, blood chemistry, and urinalysis parameters and at post-mortem macroscopic and microscopic examination (unpublished study from 1972 cited in ACG99). Since it was not clear which organs were affected and which animals (with abraded or intact skin), the committee is not able to draw conclusions from this study.

The committee did not find data on the potential carcinogenicity, mutagenicity/genotoxicity, or reproduction toxicity of m-phthalodinitrile.

7 Existing guidelines

The current administrative occupational exposure limit (MAC) for m-phthalodinitrile in the Netherlands is 5 mg/m³, 8-hour TWA.

Existing occupational exposure limits for m-phthalodinitrile in some European countries and in the USA are summarised in the annex.

8 Assessment of health hazard

m-Phthalodinitrile was not irritating to the skin of rabbits. No eye irritation was seen after single instillation of 50 mg for 5 minutes while marked vascular injection was induced by a 50% aqueous paste.

Species differences were observed after acute oral dosing of m-phthalodinitrile, with LD₅₀-values ranging from approximately 180 mg/kg bw in mice and approximately 350 mg/kg bw in guinea pigs and rabbits to higher than 5000 mg/kg bw in rats. Based on these data, the committee concludes that m-phthalodinitrile should be considered as ‘toxic if swallowed’.

Unpublished inhalation and dermal toxicity studies which were not available to the committee showed that inhalation exposure of rats to aerosol concentrations of unknown particle sizes and particle size distributions of 190
and 1250 mg/m³, 6 hours/days, 5 days/week, for 2 weeks, caused occasional diarrhea (on day 2) and rhinorrhea and diarrhea, respectively. No other treatment-related effects were observed. Dermal application of 1000 or 2000 mg/kg bw, 6 hours/day, 5 days/week, for 3 weeks, to the intact or abraded skin of rabbits caused increased organ sizes (not specified) at both levels and reduced female body weight at 2000 mg/kg bw. No effects were seen at 500 mg/kg bw.

The committee did not find data on the potential carcinogenicity, mutagenicity/genotoxicity, or reproduction toxicity of \textit{m}-phthalodinitrile.

The committee considers the toxicological data base on \textit{m}-phthalodinitrile too poor to justify recommendation of a health-based occupational exposure limit.

The committee concludes that there is insufficient information to comment on the present MAC-value.

References

Arb00a Arbejdstilsynet. Grænseværdier for stoffer og materialer. Copenhagen, Denmark: Arbejdstilsynet, 2000; At-vejledning C.0.1.

TRG00 TRGS 900. Grenzwerte in der Luft am Arbeitsplatz; Technische Regeln für Gefahrstoffe. BArbBl 2000; 2.

027-8 Health-based Reassessment of Administrative Occupational Exposure Limits
Annex

Occupational exposure limits for \textit{m}-phthalodinitrile in various countries.

<table>
<thead>
<tr>
<th>country - organisation</th>
<th>occupational exposure limit ppm</th>
<th>mg/m(^3)</th>
<th>time-weighted average</th>
<th>type of exposure limit</th>
<th>note(^a)</th>
<th>lit ref(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Netherlands - Ministry</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>8 h administrative</td>
<td>SZW01</td>
<td></td>
</tr>
<tr>
<td>Germany - AGS - DFG MAK-Kom.</td>
<td>-</td>
<td>-</td>
<td>5(^c)</td>
<td>TRG00</td>
<td>DFG01</td>
<td></td>
</tr>
<tr>
<td>Great Britain - HSE</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>HSE01</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>Arb00b</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>8 h</td>
<td>Arb00a</td>
<td></td>
</tr>
<tr>
<td>USA - ACGIH - OSHA - NIOSH</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>8 h TLV</td>
<td>ACG01</td>
<td></td>
</tr>
<tr>
<td>- NIOSH</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>10 h STEL</td>
<td>ACG00</td>
<td></td>
</tr>
<tr>
<td>European Union - SCOEL</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>CEC00</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) S = skin notation, which means that skin absorption may contribute considerably to body burden; sens = substance can cause sensitisation

\(^b\) Reference to the most recent official publication of occupational exposure limits

\(^c\) Measured as the respirable fraction

027-9 \textit{m}-Phthalodinitrile