2-Nitropropane

Health based calculated occupational cancer risk values

Aanbiedingsbrief

2-Nitropropane

Health based calculated occupational cancer risk values

Dutch Expert Committee on Occupational Standards, a committee of the Health Council of the Netherlands

to

the Minister and State Secretary of Social Affairs and Employment

No. 1999/13OSH, The Hague, 20 December 1999

all rights reserved

ISBN: 90-5549-299-X

Preferred citation:

Health Council of the Netherlands: Dutch Expert Committee on Occupational Standards (DECOS). 2-Nitropropane. The Hague: Health Council of the Netherlands, 1999; publication no. 1999/13OSH.

Contents

	Samenvatting 9
	Executive Summary 11
1	Scope 13
1.1	Background 13
1.2	Committee and procedure 14
2	2-Nitropropane 15
2.1	Introduction 15
2.2	Identity and physical and chemical properties 16
2.3	Carcinogenicity studies and selection of study suitable
	for risk estimation in the occupational situation 17
2.4	Carcinogenic activity in experimental animals, lifetime low-dose exposure 18
2.5	Health risk to humans, lifetime low-dose exposure 19
2.6	Health risk to workers, establishment of the HBC-OCRV 19
2.7	Existing occupational exposure limits 19
2.8	Toxicity profile 20

References 23

Annexes 25

- A Request for advice 27
- B The Committee 29
- C Comments on the public draft *31*
- D Animal studies 33

Samenvatting

Op verzoek van de Minister van Sociale Zaken en Werkgelegenheid schat de Commissie WGD van de Gezondheidsraad het extra kankerrisico bij beroepsmatige blootstelling aan stoffen die door de Europese Unie of door de Commissie WGD als genotoxisch kankerverwekkend zijn aangemerkt. In dit rapport maakt zij zo'n schatting voor 2-nitropropaan. Zij heeft daarbij gebruik gemaakt van de methode die is beschreven in het rapport 'Berekening van het risico op kanker' (1995/06WGD) (Hea95).

Naar schatting van de commissie is de extra kans op kanker voor 2-nitropropaan:

- 4 x 10⁻⁵ bij 40 jaar beroepsmatige blootstelling aan 0.036 mg/m³
- 4 x 10⁻³ bij 40 jaar beroepsmatige blootstelling aan 3.6 mg/m³

Executive summary

On request of the Minister of Social Affairs and Employment the Dutch Expert Committee on Occupational Standards (DECOS), a committee of the Health Council of the Netherlands, estimates the additional lifetime cancer risk associated with occupational exposure to substances that have been classified by the European Union or the DECOS as genotoxic carcinogen. In this report the committee presents such estimates for 2-nitropropane. It has used the method described in the report 'Calculating cancer risks due to occupational exposure to genotoxic carcinogens' (1995/06WGD) (Hea95).

The committee estimated that the additional lifetime cancer risk for 2-nitropropane amounts to:

- 4 x 10⁻⁵ for 40 years of occupational exposure to 0.036 mg/m³
- 4 x 10⁻³ for 40 years of occupational exposure to 3.6 mg/m³

Chapter 1 Scope

1.1 Background

In the Netherlands, occupational exposure limits for chemical substances are set using a three-step procedure. In the first step, a scientific evaluation of the data on the toxicity of the substance is made by the Dutch Expert Committee on Occupational Standards (DECOS), a committee of the Health Council of the Netherlands, on request of the Minister of Social Affairs and Employment (annex A). This evaluation should lead to a health-based recommended exposure limit for the concentration of the substance in air. Such an exposure limit cannot be derived if the toxic action cannot be evaluated using a threshold model, as is the case for substances with genotoxic carcinogenic properties.

In this case an exposure-response relationship is recommended for use in regulatory standard setting, ie. the calculation of so-called health-based calculated occupational cancer risk values (HBC-OCRVs). The committee calculates HBC-OCRVs for compounds which are classified as genotoxic carcinogens by the European Union or by the present committee.

For the establishment of the HBC-OCRV's the committee generally uses a linear extrapolation method, as described in the committee's report 'Calculating cancer risk due to occupational exposure to genotoxic carcinogens' (1995/06WGD). The linear model to calculate occupational cancer risk is used as a default method, unless scientific data would indicate that using this model is not appropriate.

In the next phase of the three-step procedure, the Social and Economic Council advises the Minister of Social Affairs and Employment on the feasibility of using the HBC-OCRVs as regulatory occupational exposure limits. In the final step of the procedure the Minister sets the official occupational exposure limits.

1.2 Committee and procedure

The present document contains the derivation of HBC-OCRVs by the committee for 2-nitropropane. The members of the committee are listed in Annex B. The first draft of this report was prepared by H Stouten and MI Willems, from the TNO Nutrition and Food Research Institute in Zeist, by contract with the Ministry of Social Affairs and Employment.

Chapter

2-Nitropropane

2.1 Introduction

2

2-Nitropropane has been classified as a genotoxic carcinogen by the European Union (ISZW99).

This evaluation of the carcinogenicity and other toxic effects of 2-nitropropane has been based on reviews by IARC (IARC82), the Dutch Expert Committee on Occupational Standards (DECOS; WGD85), the Deutsche Forschungsgemeinschaft (DFG; Gre95), the American Conference of Governmental Industrial Hygienists (ACGIH; ACG91), and the UK Health and Safety Executive (HSE96a). In addition, literature was retrieved from the online data bases Medline, Toxline, and Chemical Abstracts, covering the period 1966 to December 1995/January 1996. Where relevant, the original publications were reviewed and evaluated as indicated in the text.

2.2 Identity and physical and chemical properties*

Chemical name :		2-nitropropane			
CAS registry number	:	79-46-9			
EEC number	:	609-002	-00-1		
EINECS number	:	201-209	-1		
Synonyms	:	β-nitrop nitroisop	nitropropane; dimethylnitromethane; isonitropropane; roisopropane; sec-nitropropane		
Description	:	2-nitrop (detectal	hitropropane is a colourless, oily liquid with a pleasant odour etectable at 5-25 ppm)		
Molecular formula	:	C ₃ H ₇ NO	2		
Structure	:				
Molecular weight	·	89.1			
Boiling point (101.3 kPa)		120.25 °	С		
Melting point	:	-93 °C			
Density of the fluid (20 °C)			:	0.998 g/ml	
Vapour density (air = 1; 101.3 kPa)			:	3.06	
Vapour pressure (20 °C)			:	2.3 kPa	
Relative density of saturated vapour/air mixture (air = 1; 20 °C)			:	1.04	
Saturated vapour concentration			:	17,100 ppm	
Flash point			:	39 °C (open cup)	
Explosive limits, vol% in air			:	2.6%	
Solubility in water			:	170 g/l	
Solubility in organic solvents			:	soluble in ethanol and diethylether	
$Log \ P_{_{oct/w}}$:	0.554	
Conversion factors (25 °C, 101.3 kPa)			:	$1 \text{ mg/m}^3 = 0.28 \text{ ppm}$ $1 \text{ ppm} = 3.6 \text{ mg/m}^3$	
EEC labeling			:	R: 45-10-20/22; S: 53-45	
EEC classification			:	R 10/ Carc cat 2; R45/ Xn; R 20/22	

*

CEG93; HSE96a; IARC82; WGD85

2.3 Carcinogenicity studies and selection of study suitable for risk estimation in the occupational situation

The carcinogenicity of 2-nitropropane has been evaluated by IARC (IARC82), DECOS (WGD85), DFG (DFG89), ACGIH (ACG91), and WHO (WHO92). IARC concluded that there was sufficient evidence for carcinogenicity to rats but that there were no adequate epidemiological data available (IARC82); the DFG concluded that 2-nitropropane was unmistakably carcinogenic in animal experimentation only (Gre95), while ACGIH concluded that 2-nitropropane is a suspect human carcinogen. However, the available epidemiological data do not allow quantitative risk assessment for 2-nitropropane.

The ACGIH evaluated a retrospective mortality study of a group of 1481 employees and former employees of a 2-nitropropane production facility in Sterlington, Louisiana, with up to 27 years of exposure (Mil79). In 1983, an update of this study up to January 1982 was published (Bol83). The ACGIH concludes that lack of individual exposure data, the limited number of workers with long exposures (15 years), and the small number of deaths among the group studied prohibit the conclusion from these data that 2-nitropropane is without carcinogenic activity in humans (ACG91).

Tables 1 and 2 (Annex D) summarize the carcinogenicity studies in experimental animals. The chronic toxicity of 2-nitropropane was examined in mice exposed by inhalation and in rats exposed orally (gavage) or by inhalation. Exposure by inhalation resulted in hepatocellular carcinomas and hepatocellular nodules in rats and in an increased incidence of nodular hyperplasia in the liver of mice. Male animals appeared more susceptible than females. Oral exposure of rats for 16 weeks resulted in hepatocarcinomas in all exposed animals in week 77.

The series of studies reported by Griffin *et al.* is used for calculation of the potential cancer risk of 2-nitropropane under workplace conditions. Griffin *et al.* examined in 3 separate experiments the long term toxicity of 25, 100 and 200 ppm 2-nitropropane in male and female SD-rats exposed by inhalation, 7 hr/day, 5 days per week for 6 months (200 ppm), 18 months (100 ppm) and 22 months (25 ppm) (Gri78, Gri80, Gri81). At 100 ppm, hepatocellular carcinomas in males occurred after 12 months of exposure, and in females after 18 months; at 200 ppm, hepatocellular carcinomas in males occurred after 6 months of exposure (Gri80, p.280). Except for a short note in the discussion part of Gri80, no information is given on the number of tumour-bearing animals in the 100 and 200 ppm groups (Gri78, Gri80, Gri81). At 25 ppm, focal areas of hepatic cellular nodules were reported to occur in 3 of 250 control animals and 13 of 249 exposed animals (Gri80). Despite a number of shortcomings, e.g. limited reporting, lack of information on the number of tumour-bearing animals in the 100 and 200

ppm groups, and, moreover, inconsistencies in the reporting, the studies of Griffin *et al.* are considered to be the most appropriate to estimate the carcinogenic activity of 2-nitropropane in view of their experimental set up, namely duration time up to 22 months and data of different exposure levels. In the absence of reliable data on the numbers of tumour bearing animals in the 100 and 200 ppm exposure groups and the incidence of tumour-bearing animals in the control groups, the incidence of hepatic cellular nodules in the 25 ppm group is used as starting point to calculate the carcinogenic activity of 2-nitropropane. At this exposure level, the combined incidence (male and female) of hepatic cellular nodules amounted to 13/249.

2.4 Carcinogenic activity in experimental animals, lifetime low-dose exposure

To calculate the carcinogenic activity expressed as the incidence per mg 2-nitropropane per m³, the lowest concentration (25 ppm*, ie 78 mg/m³) resulting in the induction of hepatocellular nodules in the study of Griffin is used as starting point (Gri80, Gri81). The committee is of the opinion that the available data do not indicate that the use of the linear model is not appropriate.

The incidence of tumour bearing animals per mg/kg bw/day (lifespan conditions, assuming a linear dose-response relationship), I_{concentration}, is calculated as follows:

$$I^{**}_{\text{concentration}} = \frac{I_{e} - I_{c}}{C \times (X_{\rho o}/L) \times (X_{\rho e}/L) \times \exp \text{osure hours per day/24 x exposure days per week/7}} = \frac{I_{e} - I_{c}}{C \times (X_{\rho o}/L) \times (X_{\rho o}/L)$$

 $\frac{\text{13/249 - 3/250}}{(\text{78 mg/m}^3) \times (\text{665}^{\textit{d}}/\text{1000}^{\textit{d}}) \times (\text{665}^{\textit{d}}/\text{1000}^{\textit{d}}) \times \text{7/24 } \times \text{5/7}} = 5.6 \times 10^{\text{-3}} \; [\text{mg/m}^3]^{\text{-1}}$

2.5 Health risk to humans, lifetime low-dose exposure

To estimate the additional lifetime risk of cancer in humans under lifespan conditions un the basis of results in animal experiments, it is assumed that no difference exists between experimental animals and man with respect to toxicokinetics, mechanism of tumour induction, target, susceptibility etc, unless specific information is available which

 Conversion of 25 ppm into 78 mg/m³ is taken over from Griffin *et al* and is based on daily measurements of temperature and atmospheric pressure.
 I_{concentration}= the carcinogenic activity attributable to the exposure to the substance per unit daily dose under lifespan conditions, assuming a linear dose response relationship, usually expressed per mg/m³ or per mg/kg bw/day. I_e and I_e = incidence of tumour bearing animals or tumours in exposed and control animals, respectively, X_{po} = exposure period, X_{pe} = experimental period L = standard lifespan for the animals in question (L rat is assumed to be 1000 days) justifies a different approach. Furthermore, it is assumed that the average man lives 75 years, and is exposed 24 hours per day 7 days/week, 52 weeks per year for lifetime.

2.6 Health risk to workers, establishment of the HBC-OCRV

To estimate the additional lifetime risk of cancer in humans under workplace conditions, it is assumed that the average man lives 75 years, is exposed 8 hours per day during 5 days per week, 48 weeks per year, for 40 years, and inhales 10 m³ air per 8-hour-working day.

Using as starting point the estimated incidence of 5.6×10^{-3} per mg/m³, the additional lifetime cancer risk per mg/m³ under occupational conditions (=HBC-OCRV) amounts to:

HBC-OCRV = 5.6 x $10^{-3} x \frac{40y}{75y} x \frac{48w}{52w} x \frac{5d}{7d} x \frac{10m^3}{18m^3} = 1.1 x 10^{-3} [mg/m^3]^{-1}$

Based on the HBC-OCRV the additional lifetime cancer risk amounts to:

- $4 \ge 10^{-5}$ for 40 years of exposure to 0.036 mg/m³
- 4×10^{-3} for 40 years of exposure to 3.6 mg/m³

2.7 Existing occupational exposure limits

Table 1 summarizes the occupational exposure limits settled by regulatory authorities of the Netherlands, Germany, Sweden, and the UK and by the USA-ACGIH.

The Netherlands have a limit of 3.6 mg/m^3 being comparable with the concentration leading to an additional cancer risk of 4×10^{-3} . Sweden and the UK have a limit of 18 mg/m^3 , being about a factor 4 higher than the concentration leading to an additional cancer risk of 4×10^{-3} .

-	-				
	level		time relation	ref.	
	ppm	mg/m ³	-		
The Netherlands	1	3.6	8-h TWA	ISZW99	
Germany ^a (TRK)	(5)	(18)	-	DFG99	
Sweden ^b	5	18	8-h TWA	NBO93	
UK ^c	5	19	8-h TWA	HSE99	
USA-ACGIH ^d	10	36	8-h TWA	ACG99	

Table 1 Occupational exposure limits for 2-nitropropane.

The DFG classifies 2-nitropropane as a category A2 carcinogen; DFG category A carcinogens are not assigned a health-based occupational exposure limit, but a so called TRK-value (TRK = Technische Richtkonzentrationen), a concentration feasible with currently available technical means. TRK-values are given in brackets

^b With the following designation: C, the substance is carcinogenic

^c Maximum Exposure Limit (MEL). 2-Nitropropane belongs to a group substances with risk phrase R45 (may cause cancer)

^d Classified as a category A3 carcinogen: confirmed animal carcinogen with unknown relevance to humans

2.8 Toxicity profile

The toxicity of 2-nitropropane has been reviewed by the IARC (IARC82), the ACGIH (ACG91), the HSE (HSE96), and WHO (WHO92).

2-Nitropropane has moderate acute toxicity in mammals, although sensitivity differs widely among species tested. For rats, the 6-hour LC_{50} amounted to 400 ppm (1456 mg/m³) in males and 720 ppm (2621 mg/m³) in females. The acute oral LD_{50} -value in rats was reported to be 720 mg/kg (ACG91, HSE96a).

Skin application daily for 5 days did neither result in local irritation, nor in signs of systemic disease (IARC82). The review documents did not give data on sensitization or eye irritation.

In repeated-dose toxicity studies the liver appeared the main target organ upon exposure by inhalation and in orally exposed animals. In rats treated with oral doses of 0.002, 0.01, 0.05, and 0.25 g/kg, 5 times per week for 4 weeks by gavage, treatment-related effects were seen at 0.05 and 0.25 g/kg bw; the two lowest dose levels 0.002 and 0.01 g/kg bw were without obvious harmful effects (Wester *et al.* 1989 in

WHO92).

Tests for mutagenicity in mammals and mammalian cell lines were generally negative, although strongly positive results were obtained in assays for DNA repair synthesis in rat hepatocytes following dosing of 2-nitropropane both *in vitro* and *in vivo*.

Apart from an ip teratogenicity study in rats, no reproduction and/or other teratogenicity studies were available.

Studies of humans accidently exposed to 2-nitropropane show that exposure to high concentrations (unspecified) induces liver damage and may cause death (ACG91). Daily occupational exposure to 20 - 45 ppm (72 - 162 mg/m³) induced headache, nausea and anorexia which persisted for several hours after leaving the workplace, whereas 10 to 30 ppm ((36 - 108 mg/m³, 4 hrs/day for 3 or fewerdays/week) produced no noticeable effects.

Based on the NOAEL of 0.01 g/kg bw found in the oral 4-wk experiment with rats and the findings in humans it is concluded that a health-based occupational exposure limit for 2-nitropropane derived from data other than on genotoxicity/carcinogenicity would in all likelihood be expected to be in between the concentration levels associated with the referential cancer risk levels.

The Hague, 20 December 1999, for the committee

dr ASAM van der Burght,

Prof. dr GJ Mulder,

scientific secretary

chairman

References

ACG91	American Conference of Governmental Industrial Hygienists (ACGIH). Documentation of Threshold			
	Limit Values and Biological Exposure Indices. 6th ed. Cincinnati OH, USA: ACGIH, 1991: 1124-28.			
ACG99	American Conference of Governmental Industrial Hygienists (ACGIH). 1999. TLVs® and BEIs®. Guide			
	to Occupational Exposure Values, Cincinnati OH, USA: ACGIH, 1999: 126.			
Bol83	Bolender FL. Report to the International Minerals and Chemicals Corporation, Northbrook IL, USA,			
	1983 (cited from ACG91).			
CEG93	ommissie van de Europese Gemeenschappen (CEG). In: Bijlage bij Richtlijn 93/72/EEG van de			
	Commissie van 1 september tot 19e aanpassing aan de vooruitgang van de techniek van Richtlijn			
	67/543/EEG van de Raad betreffende de aanpassing van de wettelijke en bestuursrechtelijke bepalingen			
	inzake de indeling, de verpakking en het kenmerken van gevaarlijke stoffen (vervolg). Maastricht, The			
	Netherlands: Ellis Publications, 1993: 1044 (Publikatieblad van de Europese Gemeenschappen L258A,			
	deel II).			
DFG99	Deutsche Forschungsgemeinschaft (DFG): Senatskommission zur Prüfung gesundheitsschädlicher			
	Arbeitsstoffe. MAK- und BAT-Werte Liste 1999. Maximale Arbeitsplatzkonzentrationen und biologische			
	Arbeitsstofftoleranzwerte. Weinheim, FRG: VCH Verlagsgesellschaft mbH, 1999 (Mitteilung 35).			
EPA95	US Environmental Protection Agency (EPA). Integrated Risk Information System (IRIS). SilverPlatter			
	International NV, 1996; CD-ROM, May 1995.			
Fia87	Fiala ES, Czerniak R, Castonguay A, et al. Assay of 1-nitropropane, 2-nitropropane, 1-azoxypropane and			
	2-azoxypropane for carcinogenicity by gavage in Sprague-Dawlet rats. Carcinogenesis 1987; 8: 1947-9.			
Gre95	Greim, H, ed. 2-Nitropropan. In: Gesundheitsschädliche Arbeitsstoffe. Toxikologisch-arbeitsme-			
	dizinische Begründungen von MAK-Werten (Maximale Arbeitsplatz-Konzentrationen). 1st-21th ed.			
	Weinheim, FRG: VCH Verlagsgesellschaft mbH, 1995.			

Gri78	Griffin TB, Benitz KF, Coulston F. Chronic inhalation toxicity of 2-nitropropane in rats. Pharmacologist 1978; 3: 145.
Gri80	Griffin TB, Coulston F, Stein AA. Chronic inhalation exposure of rats to vapors of 2-nitropropane at 25
	ppm. Ecotoxicol Environ Saf 1980; 4: 267-81.
Gri81	Griffin TB, Stein AA, Coulston F. Histologic study of tissues and organs from rats exposed to vapors of
	2-nitropropane at 25 ppm. Ecotoxicol Environ Saf 1981; 5: 194-201.
Gri87	Griffin TB, Coulston F, Stein A. Chronic inhalation exposure of mice to 2-nitropropane (100 ppm).
	Unpublished report from Coulston International Corp., White Sands Research Centre, 2512 Christina
	Place, Alamogordo NM, USA. Submitted to WHO by Karlshamns ab 1987 (cited in JEC90).
Hea95	Health Council of the Netherlands, Dutch Expert Committee on Occupational Standards (DECOS).
	Calculating cancer risks, THe HAgue, The Netherlands. 1995; pub no 1995/06 WGD.
HSE96	Health and Safety Executive (HSE). 2-nitropropane. In EH64 summary for criteria for Occupational
	exposure limits 1996. Sudbury (Suffolk), UK: HSE Books, 1996
HSE99	Health and Safety Executive (HSE). Occupational exposure limits 1999. Sudbury (Suffolk), UK: HSE
	Books, 1999
Hun97	Hunter WJ, Aresini G, Haigh R et al. Occupational exposure limits for chemicals in de European Union.
	Occup. Environ. Med, 1997; 54:217-22.
IARC82	International Agency for Research on Cancer (IARC). 2-Nitropropane. In: Some industrial chemicals and
	dyestuffs. Lyon, France: IARC, 1982: 331-41 (IARC monographs on the evaluation of the carcinogenic
	risk of chemicals to humans; Vol 29).
ISZW99	Inspectiedienst van het Ministerie van Sociale Zaken en Werkgelegenheid (I-SZW). De nationale
	MAC-lijst 1999. The Hague, The Netherlands: Sdu Servicecentrum Uitgeverijen, 1999: 45 (pub no
	P145).
JEC90	Joint FAO/WHO Expert Committee on Food Additives (JECFA). 2-Nitropropane. In: Toxicological
	evaluation of certain food additives and contaminants. Geneva, Switzerland: WHO, 1990: 127-39 (WHO
	Food Additives Series 26).
Lew79	Lewis TR, Ulrich CE, Busey WM. Subchronic inhalation toxicity of nitromethane and 2-nitropropane. J
	Environ Pathol Toxicol 1979; 2: 233-49.
Mil79	Miller M, Temple G. Report to the International Minerals and Chemical Corporation, Mundelin IL,
	USA, 1979 (cited from ACG91).
NBO93	National Board of Occupational Safety and Health (NBOSH). Occupational exposure limits. Solna,
W. 00	Sweden: NBOSH, 1993: 54, 76 (Ordinance AFS 1993/9).
Wes89	Wester PW, Van Leeuwen FXR, De Vries T. 4-Week toxicity study with 2-nitropropane (2-NP) by
	gavage in rats. Bilthoven, The Netherlands: National Institute of Public Health and Environmental
WCD05	Protection, 1989; rep no 658501 001 (cited from WHO92).
w GD85	Werkgroep van Deskundigen (WGD). Kapport inzake grenswaarde 2-nitropropaan. The Hague, The
WILLOOD	World Health Organization (WHO): Intermetional Programmers on Chamical Sofety (IDOS)
WHU92	2 Nitropropage Gapaya Switzerland: WHO, 1992; Environmental Health Criteria 128
	2-initopropane. Geneva, Switzenanu. WIO, 1992; Environmental Health Unterta 158

A	Request for advice
В	The committee
С	Comments on the public draft
D	Animal studies

Annexes

Annex

Α

Request for advice

In a letter dated October 11, 1993, ref DGA/G/TOS/93/07732A, to, the State Secretary of Welfare, Health and Cultural Affairs, the Minister of Social Affairs and Employment wrote:

Some time ago a policy proposal has been formulated, as part of the simplification of the governmental advisory structure, to improve the integration of the development of recommendations for health based occupation standards and the development of comparable standards for the general population. A consequence of this policy proposal is the initiative to transfer the activities of the Dutch Expert Committee on Occupational Standards (DECOS) to the Health Council. DECOS has been established by ministerial decree of 2 June 1976. Its primary task is to recommend health based occupational exposure limits as the first step in the process of establishing Maximal Accepted Concentrations (MAC-values) for substances at the work place.

In an addendum, the Minister detailed his request to the Health Council as follows:

The Health Council should advice the Minister of Social Affairs and Employment on the hygienic aspects of his policy to protect workers against exposure to chemicals. Primarily, the Council should report on health based recommended exposure limits as a basis for (regulatory) exposure limits for air quality at the work place. This implies:

A scientific evaluation of all relevant data on the health effects of exposure to substances using a
criteria-document that will be made available to the Health Council as part of a specific request for
advice. If possible this evaluation should lead to a health based recommended exposure limit, or, in

the case of genotoxic carcinogens, a 'exposure versus tumour incidence range' and a calculated concentration in air corresponding with reference tumour incidences of 10^{-4} and 10^{-6} per year.

- The evaluation of documents review the basis of occupational exposure limits that have been recently established in other countries.
- Recommending classifications for substances as part of the occupational hygiene policy of the government. In any case this regards the list of carcinogenic substances, for which the classification criteria of the Directive of the European Communities of 27 June 1967 (67/548/EEG) are used.
- Reporting on other subjects that will be specified at a later date.

In his letter of 14 December 1993, ref U 6102/WP/MK/459, to the Minister of Social Affairs and Employment the President of the Health Council agreed to establish DECOS as a Committee of the Health Council. The membership of the Committee is given in annex B.

Annex

Β

The Committee

- GJ Mulder, *chairman* professor of toxicology; Leiden University, Leiden
- RB Beems toxicologic pathologist; National Institute of Public Health and the Environment, Bilthoven
- PJ Borm toxicologist; Heinrich Heine Universität Düsseldorf (Germany)
- JJAM Brokamp, *advisor* Social and Economic Council, The Hague
- VJ Feron, professor of toxicology; TNO Nutrition and Food Research Institute, Zeist
- DJJ Heederik epidemiologist; Wageningen University, Wageningen
- LCMP Hontelez, *advisor* Ministry of Social Affairs and Employment, The Hague
- G de Jong occupational physician; Shell International Petroleum Maatschappij, The Hague
- J Molier-Bloot occupational physician; BMD Akers bv, Amsterdam
 IM Rietjens
- professor in Biochemical toxicology; Wageningen University, Wageningen.

- H Roelfzema, *advisor* Ministry of Health, Welfare and Sport, Den Haag
- T Smid occupational hygienist; KLM Health Safety & Environment, Schiphol and professor of working conditions, Free University, Amsterdam
- GMH Swaen epidemiologist; Maastricht University, Maastricht
- HG Verschuuren toxicologist; DOW Europe, Horgen (Switzerland)
- AAE Wibowo toxicologist; Coronel Institute, Amsterdam
- F de Wit occupational physician; Labour Inspectorate, Arnhem
- CA Bouwman, *scientific secretary* Health Council of the Netherlands, Den Haag
- ASAM van der Burght, *scientific secretary* Health Council of the Netherlands, Den Haag

The first draft of the present advisory report was prepared by H Stouten and M Willems, from the Department of Occupational Toxicology of the TNO Nutrition and Food Research Institute, by contract with the Ministry of Social Affairs and Employment.

Secretarial assistance: E Vandenbussche-Parméus. Lay-out: J van Kan.. Annex

С

Comments on the public draft

A draft of the present report was released in 1999 for public review. The following organizations and persons have commented on the draft document:

- mr P Ridgeway, Health and Safety Executive, United Kingdom
- mr A Aalto, Tampere, Finland

Annex

D

Animal studies

Table 1 Carcinogenicity studies with 2-nitropropane, oral experiments.

authors	species	experimental	findings, tumours	remark
Fiala <i>et al.</i> (Fia87)	Sprague-Dawley rat (22 males)	Xpo: three times/week for 16 weeks Xpe: 77 weeks Dl: 0, 89 mg/kg bw (gavage)	hepatocarcinomas: 0/22 controls, 22/22 test animals, of which 4 with lung metastases	Xpo less than 1/4 lifespan

Xpo = exposure period; Xpe = experimental period

authors	species	experimental	findings, tumours	remark
Griffin <i>et al</i> , 1980,1981 (Gri80; Gri81)	Sprague-Dawley rat (125/sex/group)	Xpo: 7 hr/day, 5 days/week, 22 months (95 weeks). Concentration 0, 25 ppm (78 mg/m ³) ^a Xpe = Xpo	Focal areas of hepatocellular nodules were noted in 3/250 control animals (2/125 males, 1/125 females) and 13/249 exposed animals (10/125 males, 3/124 females)	I per mg/m ³ (lifespan exposure conditions) = 5.6×10^{-3}
Angus Chemical Co., 1985 in EPA95 Gri78, Gri80, WHO90	Sprague-Dawley rat (125/sex/group)	Xpo: 7 hr/day, 5 days/week for 18 months. Concentrations: 0, 100 ppm $(312 \text{ mg/m}^3)^a$ Xpe = Xpo	Hepatocellular carcinomas in males at 12 months of exposure and in females at 18 months	Very limited reporting, a.o. numbers of tumour-bearing animals not reported
Gri78, Angus Chemical Co., 1985 in IR195, Gri78, Gri80, WHO90	Sprague-Dawley rat (125/sex/group)	Xpo: 7 hr/day, 5 days/week for 6 months. Concentrations: 0, 200 ppm (624 mg/m ³) ^a Xpe variable, up to 12 months	Xpe 6 m: hyperplastic areas, hyperplastic nodules and preneoplastic foci in 6/10 males; Xpe 12 m: metastasizing tumours in 9/10 males	Very limited reporting
Griffin <i>et al</i> (Gri87)	TEX:(ICR)AM mice 60/sex/group	Xpo: 7 hr/day, 5 days/week for 18 months. Concentrations: 0, 100 ppm (360 mg/m ³). Xpe = Xpo	Liver: nodular hyperplasia males: 10/60, 15/60 females: 4/60, 13/60 Hepatocellular carcinoma: males: 1/60, 4/60 females: 1/60, 1/60	
Lewis <i>et al</i> (Lew79)	Sprague-Dawley rat (10/group)	Xpo: 7 hr/day, 5 days/week for 6 months (24 weeks). Concentrations: 0, 27 ppm (98 mg/m ³), 207 ppm (754 mg/m ³) Xpe = Xpo	Multiple hepatocellular carcinomas or hepatic adenomas: 0/10, 0/10, 10/10 in control, low and high dose group, resp.	Short study duration Xpo < 1/4 lifespan
Lewis <i>et al</i> (Lew79)	New Zealand white rabbits (5/group)	Xpo: 7 hr/day, 5 days/week for 6 months (24 weeks). Concentrations: 0, 27 ppm (98 mg/m ³), 207 ppm (754 mg/m ³) Xpe = Xpo	No treatment-related neoplastic lesions were found	Short study duration and a small number of animals. Xpo < 1/4 lifespan Xpe too short for carcinogenicity study

Table 2 Carcinogenicity studies with 2-nitropropane, inhalation experiments.

authors conversion based on daily measurements of temperature and atmospheric pressure